Appendix 7-1: Summary of CERP Systemwide Assessment Performance Measures Kimberly Jacobs ## **SUMMARY** **Table 1** provides a summary of the Comprehensive Everglades Restoration Plan (CERP) systemwide assessment performance measures presented in the Draft CERP Systemwide Performance Measures (RECOVER, 2004a) document released on June 18, 2004. An asterisk following a title indicates that the performance measure is proposed, but not yet approved. For the natural system, performance measures are principally derived from the conceptual ecological models (CEMs) (Appendix A in RECOVER, 2004b). For urban and agricultural water supply and flood protection objectives, performance measures are based on current federal and state law and policy or derived from performance measures used in the Central and Southern Florida (C&SF) Project Comprehensive Review Study (Restudy) (USACE and SFWMD, 1999). All CERP systemwide assessment performance measures are associated with a monitoring component in the CERP Monitoring and Assessment Plan: Part 1, Monitoring and Supporting Research (MAP) (RECOVER 2004b). **Table 1.** CERP systemwide assessment performance measures. | Number | Title | Source | Map Monitoring
Module and Section | Restoration Expectations | |--------|--|---|---|---| | GE-A1 | Greater Everglades
Wetlands
Hydropattern | Everglades Ridge and
Slough, Southern Marl
Prairies, Everglades
Mangrove Estuaries, and
Big Cypress Regional
Ecosystem CEM stressor | South Florida
Hydrology Monitoring
Network 3.5.3.1 -
3.5.3.3 | Restore Natural System Model (NSM)
envelopes throughout the Greater
Everglades Wetlands, except in areas
where deviations from NSM have been
deemed to be environmentally
beneficial | | GE-A2 | Wetland Landscape
Patterns -
Freshwater and
Estuarine
Vegetation Mosaics | Everglades Ridge and
Slough, Southern Marl
Prairies, Everglades
Mangrove Estuaries, and
Big Cypress Regional
Ecosystem CEM attribute | Greater Everglades
Wetlands 3.1.3.4 | Cease loss of and recover pattern, location, directionality and spatial extent of the Greater Everglades Wetlands plant communities. | | GE-A3 | Wetland Landscape
Patterns - Ridge and
Slough Community
Sustainability | Everglades Ridge and
Slough CEM attribute | Greater Everglades
Wetlands 3.1.3.6 | Maintain or restore processes that sustain coexisting tree islands and sloughs in the current ridge and slough landscape. | | GE-A4 | Wetland Landscape
Patterns - Tidal
Creek Sustainability | Everglades Mangrove
Estuaries CEM attribute | Greater Everglades
Wetlands 3.1.3.7 | Maintain and restore processes that recover and sustain tidal creeks. | | Number | Title | Source | Map Monitoring
Module and Section | Restoration Expectations | |--------|---|--|--|--| | GE-A5 | Wetland Landscape
Patterns - Marl
Prairie Cape Sable
Sparrow Habitat | Southern Marl Prairies CEM attribute | Greater Everglades
Wetlands 3.1.3.5 | Increase number of stable subpopulations from 1 to 3, with one subpopulation west of Shark River Slough and two east of Shark River Slough. Achieve a minimum of approximately 4,000 individuals, with a final restoration target of 6,000 individuals, measured as a five-year running average. | | GE-A6 | Wetland Trophic
Relationships -
Regional
Populations of
Fishes, Crayfish,
Grass Shrimp and
Amphibians | Everglades Ridge and
Slough, Southern Marl
Prairies, and Big Cypress
Regional Ecosystem CEMs
attribute | Greater Everglades
Wetlands 3.1.3.10 -
3.1.3.11 | Recover distribution, densities, size distribution and seasonal concentrations of aquatic animals consistent with predrainage (NSM) hydropatterns and salinities in freshwater wetlands. | | GE-A7 | Wetland Trophic
Relationships -
Wading Bird
Foraging Patterns in
Overdrained
Wetlands | Southern Marl Prairies CEM attribute | Greater Everglades
Wetlands 3.1.3.12 | Achieve foraging distributions consistent with the expectations for predrainage distributions. | | GE-A8 | Wetland Trophic
Relationships -
Wading Bird Nesting
Patterns | Everglades Ridge and
Slough, Southern Marl
Prairies, Everglades
Mangrove Estuaries, and
Big Cypress Regional
Ecosystem CEM attribute | Greater Everglades
Wetlands 3.1.3.13 -
3.1.3.14 | Recover predrainage patterns of colony locations, timing and abundance, including recovery of estuarine super colonies (locations and frequency). This includes increasing and maintaining the total number of pairs of nesting birds to a minima of 4,000 great egrets, 10,000-20,000 combined snowy egrets and tricolored herons, 10,000-25,000 white ibis, and 1,500-3,000 wood storks. | | GE-A9 | Wetland Trophic
Relationships -
American Alligator
Distribution, Size,
Nesting and
Condition | Everglades Ridge and
Slough, Southern Marl
Prairies, Everglades
Mangrove Estuaries, and
Big Cypress Regional
Ecosystem CEMs attribute | Greater Everglades
Wetlands 3.1.3.15 | Recover abundance, distribution and health patterns consistent with predrainage hydrology, including return of predrainage abundance to rocky glades and mangrove estuaries. | | GE-A10 | Wetland Trophic
Relationships -
Periphyton Mat
Production and
Composition | Everglades Ridge and
Slough, and Southern Marl
Prairies CEMs attribute | Greater Everglades
Wetlands 3.1.3.8 | Restore periphyton mat cover, biovolume, organic content, percent noncalcareous algae and diatom composition consistent with predrainage (NSM) hydropatterns. | | GE-A11 | Wetland Trophic
Relationships -
Mangrove Forest
Production/Soil
Accretion | Everglades Mangrove
Estuaries CEM attribute | Greater Everglades
Wetlands 3.1.3.9 | Increase the primary productivity and soil accretion of mangrove forests in coastal areas where natural patterns of hydrology, salinity and nutrient mixing are restored. | | GE-A12 | Greater Everglades
Wetlands Coastal
Salinity Gradients | Everglades Mangrove
Estuaries CEM attribute | Greater Everglades
Wetlands 3.1.3.3 | Maintain broad coastal gradients of salinity in the southern Everglades, due to the restoration of predrainage freshwater flow volume, timing and distribution, given predicted rates of sea level rise during the next century. | | GE-A13 | American Crocodile - Juvenile Growth and Survival | Everglades Mangrove
Estuaries and Biscayne Bay
CEMs attribute | Greater Everglades
Wetlands and
Southern Estuaries
3.1.3.16 | Increase yearly survival for animals age 0-3 years for animals in Florida Bay (current values 1.5%) and increase in growth rates for animals age 0-3 years from (0.10 centimeters [cm] per day) to values approaching those observed at North Key Largo and Turkey Point (0.137-0.146 cm per day). | | Number | Title | Source | Map Monitoring
Module and Section | Restoration Expectations | |--------|--|--|---|---| | GE-A14 | Greater Everglades
Wetlands Nutrient
(Total Phosphorus
[TP] and Total
Nitrogen [TN])
Concentrations in
Surface Water | Everglades Ridge and
Slough CEM stressor | Greater Everglades
Wetlands 3.1.3.1 | The long-term TP requirement is 10 parts per billion (ppb) for a location. If long-term TP is greater than 10 ppb, the annual trend must be flat or decreasing. For TN, the target is no increase in concentrations from current conditions. | | GE-A15 | Greater Everglades
Wetlands TP
Concentrations in
Peat Soil | Everglades Ridge and Slough CEM stressor | Greater Everglades
Wetlands 3.1.3.2 | Decrease the areal extent of total phosphorus concentrations exceeding 500 milligrams per kilogram (mg/kg) and maintain or reduce long-term average concentrations to 400 mg/kg or less in the upper 10 cm of soil. | | GE-A16 | Greater Everglades
Wetlands Sulfate
Concentrations in
Surface Water | South Florida Ecosystem
Assessment: Phase I/II -
Everglades Stressor
Interactions | Greater Everglades
Wetlands 3.1.3.1 | Maintain or reduce sulfate concentrations to one part per million (ppm) or less (approximates marsh background concentrations) in surface water throughout the Greater Everglades. | | GE-A17 | Greater Everglades
Wetlands
Conductivity in
Surface Water | CERP Monitoring and
Assessment Plan: Part 1
Monitoring and Supporting
Research | Greater Everglades
Wetlands 3.1.3.1 | No more than 25% increase above background, while taking into consideration natural seasonal and annual variation. | | GE-A18 | Roseate Spoonbill
Nesting Patterns | Everglades Mangrove
Estuaries CEM attribute | Greater Everglades
Wetlands 3.1.3.14 | Achieve roseate spoonbill nesting success in seven out of every 10 years. Return breeding spoonbill numbers to 1,000 pairs nesting in Florida Bay annually, half of which would be located in the northeastern region of the bay. Reestablish spoonbill nesting along the southwestern Gulf Coast between Lostman's River and the Caloosahatchee River. | | GE-A19 | Total Phosphorus
Loads/Flow-
Weighted Mean
Concentration in
Inflows to the
Greater
Everglades
Wetlands* | Everglades Ridge and
Slough CEM stressor | Greater Everglades
Wetlands 3.1.3.1 | Specific targets will be consistent with applicable water quality standards. | | GE-A20 | Total Nitrogen
Loads/Flow-
Weighted Mean
Concentration in
Inflows to the
Greater
Everglades
Wetlands* | Everglades Ridge and
Slough CEM stressor | Greater Everglades
Wetlands 3.1.3.1 | Specific targets will be consistent with applicable water quality standards. | | SE-A1 | Surface Water
Discharges to
Biscayne Bay | Biscayne Bay CEM stressor | Southern Estuaries
3.2.3.2 and South
Florida Hydrology
Monitoring Network
3.5.3.3 | Maintain total annual volumes of surface water discharge to Biscayne Bay that equal or exceed those of baseline conditions: Wet/Dry Season Snake Creek - 66,500/93,000 acre-feet North Bay - 99,000/41,000 acre-feet Miami River - 132,000/60,000 acre-feet Central Bay - 161,000/83,000 acre-feet South Bay - 158,000/68,000 acre-feet | | Number | Title | Source | Map Monitoring
Module and Section | Restoration Expectations | |--------|--|--|---|---| | SE-A2 | Southern Estuaries
Salinity Pattern | Florida Bay, Biscayne Bay
and Everglades Mangrove
Estuaries CEMs stressor | Southern Estuaries
3.2.3.2 and South
Florida Hydrology
Monitoring Network
3.5.3.3 | Florida Bay – Provide less abrupt and less extreme decreases in salinity in the northeastern bay. Reduce the frequency, extremity and extent of hypersaline conditions in the central, southern and western bay. Increase the frequency and extent of low salinity conditions in the central bay. Increase the frequency and extent of salinities less than that of seawater in the western bay, extending westward along the Gulf of a Mexico coastal shelf to Lostman's River. Biscayne Bay – Provide mesohaline salinity patterns in nearshore waters. Lower salinity in the mouths of tidal creeks. Mangrove Estuary - Lower salinity to oligohaline conditions | | | | | | in coastal lakes and basins. | | SE-A3 | Southern Estuaries
Submerged Aquatic
Vegetation (SAV) | Everglades Mangrove
Estuaries, Florida Bay, and
Biscayne Bay CEMs
attribute | Southern Estuaries
3.2.3.3 - 3.2.3.4 | Florida Bay - Recover seagrass beds over most of bay bottom, extending west along the Gulf of Mexico coastal shelf to Lostman's River. Replace Thalassia monoculture with mixed Thalassia and Halodule. Biscayne Bay – Increase cover of seagrass beds, consisting primarily of Halodule, in nearshore areas that are presently devoid of seagrasses. Mangrove Estuaries - Increase cover and seasonal duration of Ruppia, Chara, Najas, and Utricularia in coastal lakes and basins. | | SE-A4 | Southern Estuaries
Juvenile Pink
Shrimp and
Associated Epifauna | Florida Bay, Biscayne Bay
and Everglades Mangrove
Estuaries CEMs attribute | Southern Estuaries 3.2.3.5 | Florida Bay Salinity Threshold of 20 ppt for eastern bay and 30 parts per thousand (ppt) for western bay. Florida Bay Algal Blooms Threshold of 2 ppb of chlorophyll a in eastern bay and 3 ppb of chlorophyll a in central and western bay. Associated Epifauna The abundance and diversity of fish and macroinvertebrates associated with seagrass beds should increase in Biscayne Bay and Florida Bay and along the Gulf of Mexico coastal shelf westward to Lostman's River. | | SE-A5 | Southern Estuaries
Shoreline Fish
Community | Florida Bay, Biscayne Bay,
and Everglades Mangrove
Estuaries CEMs attribute | Southern Estuaries 3.2.3.6 | Increase diversity and density of fish assemblages along the mainland mangrove shorelines of Florida Bay and Biscayne Bay. | | SE-A6 | Florida Bay Juvenile
Spotted Seatrout | Florida Bay CEM attribute | Southern Estuaries 3.2.3.7 | Increase distribution, abundance, growth and survival of juvenile spotted seatrout in north-central and western Florida Bay. | | Number | Title | Source | Map Monitoring
Module and Section | Restoration Expectations | |--------|---|--|--|--| | SE-A9 | Southern Estuaries
Nutrient
Concentrations in
Surface Water | Florida Bay and Biscayne
Bay CEMs stressor | Southern Estuaries 3.2.3.1 | Florida Bay – Current nutrient concentrations of surface water inputs the Everglades and from Florida Keys should not be exceeded so the oligotrophic nature of the bay is maintained. Biscayne Bay – Maintain or reduce surface water nutrient concentrations so as not to exceed historical background, and not to exceed a monthly average concentrations of 0.005 milligrams per liter (mg/l) TP and 0.80 mg/l TN in open portions of the estuaries. | | SE-A10 | Southern Estuaries
Nutrient Loads | Florida Bay and Biscayne
Bay CEMs stressor | Southern Estuaries 3.2.3.1 | Florida Bay – Maintain or reduce current nutrient loads from Everglades inflows and the Keys. Biscayne Bay – Maintain or reduce nutrient loads so as not to exceed historical background. Achieve a 47% reduction in TN loading. | | SE-A11 | Southern Estuaries
Algal Blooms | Florida Bay and Biscayne
Bay CEMs attribute | Southern Estuaries
3.2.3.1 | Florida Bay - decrease or cause no net increase in the frequency, duration, intensity or spatial extent of algal blooms relative to conditions documented since 1991. Northern Biscayne Bay - no net increase in algal blooms and the annual mean chlorophyll a concentrations should be 1 to 4 micrograms per liter (g/l). Open waters of central and southern Biscayne Bay - frequency of algal blooms should be zero and the annual mean chlorophyll a concentrations should less than 0.5 g/l. | | SE-A12 | Southern Estuaries
Water Clarity/Light
Penetration | Florida Bay and Biscayne
Bay CEMs attribute | Southern Estuaries 3.2.3.1 | Florida Bay – Light penetration should be sufficient to support net production by seagrasses. Biscayne Bay - Maintain existing water transparency (clarity) in clear regions supporting healthy seagrass communities, and improve water clarity in those regions where reduced water clarity is limiting growth of seagrasses. Light attenuation coefficient (Kd) should not exceed established background conditions, nor should the absolute value for a daily average exceed 0.7 in any area. | | SE-A13 | Contaminants
(Toxicants and
Pathogens) in
Biscayne Bay
Tributaries and
Coastal Sediments | Biscayne Bay CEM stressor | Southern Estuaries 3.2.3.1 | The geographic extent and concentration of sediment toxicity and water column toxicants/pathogens in Biscayne Bay and the coastal wetlands should not increase. | | NE-A1 | St. Lucie Estuary
Salinity Envelope | St. Lucie Estuary and Indian
River Lagoon CEM ¹ stressor | Northern Estuaries
3.3.3.1and and South
Florida Hydrology
Monitoring Network
3.5.3.3 | Reestablish a salinity range most favorable to juvenile marine fish, shellfish, oysters and SAV. This is estimated at 12 to 20 ppt for oysters. | ¹ CEM – Conceptual Ecological Model | Number | Title | Source | Map Monitoring
Module and Section | Restoration Expectations | |--------|--|---|---|---| | NE-A2 | Lake Worth Lagoon
Salinity Envelope | Lake Worth Lagoon CEM stressor | Northern Estuaries
3.3.3.1 and South
Florida Hydrology
Monitoring Network
3.5.3.3 | The desirable salinity range is 23 ppt (at 500 cubic feet per second [cfs] of stormwater discharge) to 35 ppt (at 0 cfs of stormwater discharge). Minimum salinity of 15 to 18 ppt. | | NE-A3 | Caloosahatchee
Estuary Salinity
Envelope | Caloosahatchee Estuary
CEM stressor | Northern Estuaries
3.3.3.1 and South
Florida Hydrology
Monitoring Network
3.5.3.3 | Reestablish a salinity range most favorable to juvenile marine fish, shellfish, oysters and SAV. This is estimated at 12 to 20 ppt for oysters. To maintain this salinity range, mean monthly flow needs to range between 300 and 800 cfs. | | NE-A4 | Loxahatchee River
Estuary Salinity
Envelope | Loxahatchee Watershed
CEM stressor | Northern Estuaries
3.3.3.2 and South
Florida Hydrology
Monitoring Network
3.5.3.3 | Minimum inflow to achieve a bottom salinity of 2 ppt at Jonathon Dickinson State Park boat ramp. This target should correspond with the Lake Worth Lagoon salinity envelope target of 23 ppt. | | NE-A5 | Northern Estuaries
Oysters | Caloosahatchee Estuary, St.
Lucie Estuary and Indian
River Lagoon, and
Loxahatchee Watershed
CEMs attribute | Northern Estuaries
3.3.3.6 | Provide 1,400 acres of suitable oyster habitat in the St. Lucie Estuary. Improve recruitment and survivorship of the estuaries oysters by restoring oyster beds in suitable habitat, and maintaining habitat function of oyster beds for fish, crabs and birds in the Caloosahatchee Estuary. | | NE-A6 | Northern Estuaries
Benthic Macro-
invertebrates | St. Lucie Estuary and Indian
River Lagoon, and
Loxahatchee Watershed
CEMs attribute | Northern Estuaries 3.3.3.8 | Increase species richness, abundance and diversity of benthic species in St. Lucie and Loxahatchee River Estuaries to that typically found in a healthy estuarine community. | | NE-A7 | Northern Estuaries
Fish Communities | Caloosahatchee Estuary,
and St. Lucie Estuary and
Indian River Lagoon CEMs
attribute | Northern Estuaries 3.3.3.7 | Restore estuarine fish assemblages with relative abundance and distribution, taxonomic composition, diversity and representation of life stages characteristic of targeted salinity regimes for each estuary. Maintain or enhance SAV habitat for juvenile fish. | | NE-A8 | Northern Estuaries
Submerged Aquatic
Vegetation | Caloosahatchee Estuary,
and St. Lucie Estuary and
Indian River Lagoon CEMs
attribute | Northern Estuaries
3.3.3.3 - 3.3.3.5 | For the South Indian River Lagoon and St. Lucie Estuary, increase cover of SAV beds to areas that are less than 1.7 meters in depth. The St. Lucie Estuary has approximately 922 acres of suitable habitat (0% colonized). South Indian River Lagoon has 19,799 acres of suitable habitat, of which 7,808 (39%) is already colonized by seagrass. Maintain flows needed to achieve the proper salinity range for SAV within all northern estuaries. | | NE-A10 | Caloosahatchee
Estuary Nutrient
Load and
Concentration | Caloosahatchee Estuary
CEM stressor | Northern Estuaries
3.3.3.2 | Improved water quality associated with lower discharge variability and establishment of CERP recommended inflow distribution. No reduction in water quality conditions as result of CERP implementation, especially concerning chlorophyll a and dissolved oxygen in the upper estuary | | NE-A11 | St. Lucie Estuary
Nutrient Load and
Concentration | St. Lucie Estuary and Indian
River Lagoon CEM stressor | Northern Estuaries 3.3.3.2 | The TP concentration of 81 ppb at the Roosevelt Bridge (50% reduction). Reduce current TN concentrations by 30%. | | NE-A12 | South Indian River
Lagoon Nutrient
Load and
Concentration | St. Lucie Estuary and Indian
River Lagoon CEM stressor | Northern Estuaries 3.3.3.2 | The targets are 0.053 mg/l TP and 0.692 mg/l TN. | | Number | Title | Source | Map Monitoring
Module and Section | Restoration Expectations | |--------|---|--|--|--| | NE-A13 | Loxahatchee River
Estuary Nutrient
Load and
Concentration | Loxahatchee Watershed
CEM stressor | Northern Estuaries 3.3.3.2 | Reduce or maintain TP concentrations lower than the statewide average of 0.080 mg/l. Reduce TN concentrations to 0.70 mg/l. | | NE-A14 | Lake Worth Lagoon
Nutrient Load and
Concentrations | Lake Worth Lagoon CEM
stressor | Northern Estuaries 3.3.3.2 | Do not increase the TP and TN concentrations in the Lake Worth Lagoon. | | NE-A15 | Northern Estuaries
Algal Bloom
Frequency | Caloosahatchee Estuary, St.
Lucie Estuary and Indian
River Lagoon and
Loxahatchee Watershed
CEMs attribute | Northern Estuaries 3.3.3.2 | Restore conditions in the St. Lucie Estuary so that the frequency of algal blooms is reduced and the severity of peak estuarine algal blooms does not exceed 15 ppb chlorophyll a at any time. Do not increase algal bloom frequency in the Caloosahatchee Estuary. Continued absence of algal blooms in the Loxahatchee River Estuary. | | NE-A16 | Northern Estuaries
Contaminants
(Toxicants and
Pathogens) | Caloosahatchee Estuary, St.
Lucie Estuary and Indian
River Lagoon, Lake Worth
Lagoon and Loxahatchee
Watershed CEMs stressor | Northern Estuaries 3.3.3.2 | Geographic extent and degree of sediment toxicity should not increase. | | NE-A17 | Northern Estuaries
Water Clarity | Caloosahatchee Estuary, St.
Lucie Estuary and Indian
River Lagoon, Loxahatchee,
and Lake Worth Lagoon
CEMs attribute | Northern Estuaries 3.3.3.2 | Improve the quality of water released to tide and reduce the quantity of water released to tide such that water clarity is sufficient to promote establishment of seagrasses and other SAV in estuaries. The specific targets for the St. Lucie Estuary are 1.44 Secchi and -1.2 photosynthetically active radiation (PAR). | | LO-A1 | Lake Okeechobee
Extreme Low Lake
Stage* | Lake Okeechobee CEM stressor | South Florida
Hydrology Monitoring
Network 3.5.3.1 | Stage never falls below 10 feet. | | LO-A3 | Lake Okeechobee
Extreme High Lake
Stage* | Lake Okeechobee CEM stressor | South Florida
Hydrology Monitoring
Network 3.5.3.1 | Stage never rises above 17 feet. | | LO-A6 | Lake Okeechobee
Native Vegetation
Mosaic - Littoral
Plant Communities
and Bulrush | Lake Okeechobee CEM attribute | Lake Okeechobee
3.4.3.2 | Littoral Plant Communities - Recolonization of much of historic coverage areas by spikerush and beakrush. Large reduction in distribution of torpedograss and cattail. An increase of 500 to 1,000 acres in the distribution of continuous stands of willow and pond apple trees in areas that are surrounded by open water. Bulrush - A nearly continuous and thick band of bulrush located along the lakeward edge of the littoral zone from Clewiston north to the area near the mouth of the Kissimmee River (> 30 miles), and around Kings Bar and Eagle Bay Islands. | | LO-A7 | Lake Okeechobee
Native Vegetation
Mosaic –
Submerged Aquatic
Vegetation | Lake Okeechobee CEM attribute | Lake Okeechobee 3.4.3.3 | Maintain more than 40,000 acres of total SAV in the lake, and more than 20,000 acres of vascular plants (in particular <i>Vallisneria</i> and <i>Potamogeton</i>) in most years (excluding years of extreme regional drought). | | Number | Title | Source | Map Monitoring
Module and Section | Restoration Expectations | |--------|--|-------------------------------|---|--| | LO-A8 | Lake Okeechobee
Fish and Aquatic
Fauna (Fish and
Invertebrates) | Lake Okeechobee CEM attribute | Lake Okeechobee 3.4.3.5 | Increase diversity and extent of forage fish and pollutant-sensitive taxa of invertebrates. Reduce the relative abundance of the pollution-tolerant macroinvertebrates, oligochaetes, in the pelagic zone to near 20%. | | LO-A9 | Lake Okeechobee
Apple Snails and
Snail Kite
Population and
Nesting | Lake Okeechobee CEM attribute | | Apple Snails – Increase average population density of apple snails, and reduce occurrence of years when population is decimated by extreme drought. Snail Kite – Increase average number of Snail Kite nests in the littoral zone from the 1998-2000 value of 3 to a short-term value of approximately 9 nests per year, and a long-term value of over 11 nests per year. Have at least one chick fledge from more than 15% of the nests. | | LO-A10 | Lake Okeechobee
Wading Bird
Feeding
Aggregations and
Nesting | Lake Okeechobee CEM attribute | Greater Everglades
Wetlands 3.1.3.12 and
3.1.3.13 | Increase the peak number of winter nests to 300 Great Blue Heron, 1,000 Great Egret, 700 Snowy Egret, 600 Tricolored Heron, 800 Little Blue Heron, and 1,000 White Ibis. | | LO-A11 | Lake Okeechobee
Fish Population
Density, Age
Structure and
Condition | Lake Okeechobee CEM attribute | Lake Okeechobee
3.4.3.6 | Improved density, age structure and condition of black crappie, largemouth bass and brim in the littoral and nearshore regions of the lake. Reduced relative abundance of gizzard shad, threadfin shad and blue tilapia. | | LO-A12 | Lake Okeechobee
Alligator Population
and Condition | Lake Okeechobee CEM attribute | Greater Everglades
Wetlands 3.1.3.15 | Maintain present population density and condition of alligators in the lake. | | LO-A13 | Lake Okeechobee
Shoreline Organic
Berm | Lake Okeechobee CEM attribute | Lake Okeechobee 3.4.3.2 | Reduce the frequency of occurrence and spatial extent of a berm of dead plant material and sediments along the western lakeshore, with no continuous berm greater than 1 kilometer (km) in length. | | LO-A14 | Lake Okeechobee
TP Concentration | Lake Okeechobee CEM stressor | Lake Okeechobee
3.4.3.1 | Pelagic TP long-term average below 40 ppb. | | LO-A15 | Lake Okeechobee
TN:TP Ratio | Lake Okeechobee CEM stressor | Lake Okeechobee 3.4.3.1 | Pelagic TN:TP long-term average ratio higher than 22:1. | | Number | Title | Source | Map Monitoring
Module and Section | Restoration Expectations | |--------|--|--------------------------------------|--|--| | LO-A16 | Lake Okeechobee
Diatom:
Cyanobacteria Ratio | Lake Okeechobee CEM attribute | Lake Okeechobee
3.4.3.1 | Long-term pelagic biovolume ratio above 1.5:1. | | LO-A17 | Lake Okeechobee
Algal Bloom
Frequency | Lake Okeechobee CEM attribute | Lake Okeechobee
3.4.3.1 | Less than 5% of pelagic samples with >40 ppb chlorophyll <i>a</i> . | | LO-A18 | Lake Okeechobee
Water Clarity | Lake Okeechobee CEM attribute | Lake Okeechobee
3.4.3.1 | Secchi disk visible on lake bottom in shoreline region from May to September. | | LO-A19 | Lake Okeechobee
Phosphorus Loads | Lake Okeechobee CEM stressor | Lake Okeechobee
3.4.3.1 | 105 metric tons per year from surface inflows. | | LO-A20 | Lake Okeechobee
Class I Surface
Water Quality
Standards | Lake Okeechobee CEM attribute | Lake Okeechobee 3.4.3.1 | No increase in exceedances of Class I standards due to cumulative effects of CERP projects. | | LO-A21 | Lake Okeechobee
Stage Envelope* | Lake Okeechobee CEM stressor | South Florida
Hydrology Monitoring
Network 3.5.3.1 | Gradual stage recession in winter to spring, from approximately 15.5 feet (January) to approximately 12.5 feet (June), followed by a gradual rise in stage from fall to winter. Extreme declines in stage to near 11 feet are desirable approximately once per decade. | | WS-A1 | Frequency, Severity
and Duration of
Water Restrictions
for Lake
Okeechobee
Service Area | Section 373.0361(2)(a)(1),
F.S. | South Florida
Hydrology Monitoring
Network 3.5.3.5 | Decrease seepage losses and harmful releases of excess water for the natural system while providing at least a 1-in-10-year level of service for the Lake Okeechobee and Lower East Coast Service Areas through regional water deliveries and seepage from Lake Okeechobee, the water conservation areas and Everglades National Park. | | WS-A2 | Frequency of Water
Restrictions for
Lower East Coast
Service Area | Florida Statute
373.0361(2)(a)(1) | South Florida
Hydrology Monitoring
Network 3.5.3.5 | Meet water supply demands during droughts up to a 1-in-10 year frequency | | WS-A3 | Potential for High
Water Levels in
South Miami-Dade
Agricultural Area | C&SF Project Restudy | South Florida
Hydrology Monitoring
Network 3.5.3.6 | Maintain existing flood protection in accordance with applicable laws | | Number | Title | Source | Map Monitoring
Module and Section | Restoration Expectations | |--------|---|--|--|---| | WS-A4 | Prevent Saltwater
Intrusion of
Biscayne Bay
Aquifer - Meet MFL
Criteria for the
Biscayne Aquifer | Chapter 40E-8, F.A.C.
Section 373.044, F.S. | South Florida
Hydrology Monitoring
Network 3.5.3.5 | Canal at Structure - Canal Stages (feet National Geodetic Vertical Datum [NGVD]) C-51 at S155 - 7.80 C-16 at S41 - 7.80 C-15 at S40 - 7.80 Hillsboro Canal at G56 - 6.75 C-14 at S37B - 6.50 C-13 at S36 - 4.00 North New River at G54 - 3.50 C-9 at S29 - 2.00 C-6 at S26 - 2.50 C-4 at S25B - 2.50 C-2 at S22 - 2.50 Stage cannot fall below these levels for more than 180 days. | | WS-A5 | Prevent Saltwater
Intrusion of
Biscayne Bay
Aquifer in South
Miami-Dade County | C&SF Project Restudy | South Florida
Hydrology Monitoring
Network 3.5.3.5 | Canal at Structure - Canal Stage
(feet NGVD)
C-100A at S123 - 2.00
C-1 at S21 - 2.00
C-102 at S21A - 2.00
C-103 at S20F - 2.00 | | TS-A1 | Mercury
Bioaccumulation | Total System CEM stressor | South Florida Mercury
Bioaccumulation
Module 3.6.3.1 | No statistically significant (90-percent confidence level) increase in levels of mercury bioaccumulation in tissue of fish, by association fish-eating wildlife, and, in accordance with CERP Guidance Memorandum (CGM) 23.01 (USACE and SFWMD, 2004), state water quality standards will be met. | | TS-A2 | Everglade Snail Kite
Habitat and Nesting
Success* | Total System CEM attribute | | Reverse a recent declining trend in the number of successful snail kite nests throughout the Greater Everglades wetlands and other supporting habitats. | $\underline{\text{Note}}\text{: An asterisk (*) following a title indicates that the performance measure is proposed, but not yet approved.}$ ## LITERATURE CITED - RECOVER. 2004a. Draft CERP Systemwide Performance Measures. Restoration Coordination and Verification Team (RECOVER), c/o United States Army Corps of Engineers, Jacksonville District, Jacksonville, FL and South Florida Water Management District, West Palm Beach, FL. - RECOVER. 2004b. Monitoring and Assessment Plan: Part 1 Monitoring and Supporting Research. Restoration Coordination and Verification Team (RECOVER), c/o United States Army Corps of Engineers, Jacksonville District, Jacksonville, FL and South Florida Water Management District, West Palm Beach, FL. - USACE and SFWMD. 1999. Central and Southern Florida Project Comprehensive Review Study Final Integrated Feasibility Report and Programmatic Environmental Impact Statement. United States Army Corps of Engineers, Jacksonville District, Jacksonville, FL, and South Florida Water Management District, West Palm Beach, FL. - USACE and SFWMD. 2004. Water Quality Considerations for the Project Implementation Report Phase. CERP Guidance Memorandum 23.01. United States Army Corps of Engineers, Jacksonville District, Jacksonville, FL, and South Florida Water Management District, West Palm Beach, FL.